[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
38.1 Introduction to contrib_ode | ||
38.2 Functions and Variables for contrib_ode | ||
38.3 Possible improvements to contrib_ode | ||
38.4 Test cases for contrib_ode | ||
38.5 References for contrib_ode |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Maxima's ordinary differential equation (ODE) solver ode2
solves
elementary linear ODEs of first and second order. The function
contrib_ode
extends ode2
with additional methods for linear and
non-linear first order ODEs and linear homogeneous second order ODEs. The code
is still under development and the calling sequence may change in future
releases. Once the code has stabilized it may be moved from the contrib
directory and integrated into Maxima.
This package must be loaded with the command load('contrib_ode)
before use.
The calling convention for contrib_ode
is identical to ode2
. It
takes three arguments: an ODE (only the left hand side need be given if the
right hand side is 0), the dependent variable, and the independent variable.
When successful, it returns a list of solutions.
The form of the solution differs from ode2
. As non-linear equations can
have multiple solutions, contrib_ode
returns a list of solutions. Each
solution can have a number of forms:
%t
, or
%u
.
%c
is used to represent the constant of integration for first order
equations. %k1
and %k2
are the constants for second order
equations. If contrib_ode
cannot obtain a solution for whatever reason,
it returns false
, after perhaps printing out an error message.
It is necessary to return a list of solutions, as even first order non-linear ODEs can have multiple solutions. For example:
(%i1) load('contrib_ode)$ (%i2) eqn:x*'diff(y,x)^2-(1+x*y)*'diff(y,x)+y=0; dy 2 dy (%o2) x (--) - (x y + 1) -- + y = 0 dx dx (%i3) contrib_ode(eqn,y,x); x (%o3) [y = log(x) + %c, y = %c %e ] (%i4) method; (%o4) factor
Nonlinear ODEs can have singular solutions without constants of integration, as in the second solution of the following example:
(%i1) load('contrib_ode)$ (%i2) eqn:'diff(y,x)^2+x*'diff(y,x)-y=0; dy 2 dy (%o2) (--) + x -- - y = 0 dx dx (%i3) contrib_ode(eqn,y,x); 2 2 x (%o3) [y = %c x + %c , y = - --] 4 (%i4) method; (%o4) clairault
The following ODE has two parametric solutions in terms of the dummy
variable %t
. In this case the parametric solutions can be manipulated
to give explicit solutions.
(%i1) load('contrib_ode)$ (%i2) eqn:'diff(y,x)=(x+y)^2; dy 2 (%o2) -- = (y + x) dx (%i3) contrib_ode(eqn,y,x); (%o3) [[x = %c - atan(sqrt(%t)), y = - x - sqrt(%t)], [x = atan(sqrt(%t)) + %c, y = sqrt(%t) - x]] (%i4) method; (%o4) lagrange
The following example (Kamke 1.112) demonstrates an implicit solution.
(%i1) load('contrib_ode)$ (%i2) assume(x>0,y>0); (%o2) [x > 0, y > 0] (%i3) eqn:x*'diff(y,x)-x*sqrt(y^2+x^2)-y; dy 2 2 (%o3) x -- - x sqrt(y + x ) - y dx (%i4) contrib_ode(eqn,y,x); y (%o4) [x - asinh(-) = %c] x (%i5) method; (%o5) lie
The following Riccati equation is transformed into a linear second order ODE in
the variable %u
. Maxima is unable to solve the new ODE, so it is
returned unevaluated.
(%i1) load('contrib_ode)$ (%i2) eqn:x^2*'diff(y,x)=a+b*x^n+c*x^2*y^2; 2 dy 2 2 n (%o2) x -- = c x y + b x + a dx (%i3) contrib_ode(eqn,y,x); d%u --- 2 dx 2 n - 2 a d %u (%o3) [[y = - ----, %u c (b x + --) + ---- c = 0]] %u c 2 2 x dx (%i4) method; (%o4) riccati
For first order ODEs contrib_ode
calls ode2
. It then tries the
following methods: factorization, Clairault, Lagrange, Riccati, Abel and Lie
symmetry methods. The Lie method is not attempted on Abel equations if the Abel
method fails, but it is tried if the Riccati method returns an unsolved second
order ODE.
For second order ODEs contrib_ode
calls ode2
then odelin
.
Extensive debugging traces and messages are displayed if the command
put('contrib_ode,true,'verbose)
is executed.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Returns a list of solutions of the ODE eqn with independent variable x and dependent variable y.
odelin
solves linear homogeneous ODEs of first and second order with
independent variable x and dependent variable y. It returns a
fundamental solution set of the ODE.
For second order ODEs, odelin
uses a method, due to Bronstein and
Lafaille, that searches for solutions in terms of given special functions.
(%i1) load('contrib_ode); (%i2) odelin(x*(x+1)*'diff(y,x,2)+(x+5)*'diff(y,x,1)+(-4)*y,y,x); ...trying factor method ...solving 7 equations in 4 variables ...trying the Bessel solver ...solving 1 equations in 2 variables ...trying the F01 solver ...solving 1 equations in 3 variables ...trying the spherodial wave solver ...solving 1 equations in 4 variables ...trying the square root Bessel solver ...solving 1 equations in 2 variables ...trying the 2F1 solver ...solving 9 equations in 5 variables gauss_a(- 6, - 2, - 3, - x) gauss_b(- 6, - 2, - 3, - x) (%o2) {---------------------------, ---------------------------} 4 4 x x
Returns the value of ODE eqn after substituting a possible solution soln. The value is equivalent to zero if soln is a solution of eqn.
(%i1) load('contrib_ode)$ (%i2) eqn:'diff(y,x,2)+(a*x+b)*y; 2 d y (%o2) --- + (a x + b) y 2 dx (%i3) ans:[y = bessel_y(1/3,2*(a*x+b)^(3/2)/(3*a))*%k2*sqrt(a*x+b) +bessel_j(1/3,2*(a*x+b)^(3/2)/(3*a))*%k1*sqrt(a*x+b)]; 3/2 1 2 (a x + b) (%o3) [y = bessel_y(-, --------------) %k2 sqrt(a x + b) 3 3 a 3/2 1 2 (a x + b) + bessel_j(-, --------------) %k1 sqrt(a x + b)] 3 3 a (%i4) ode_check(eqn,ans[1]); (%o4) 0
The variable method
is set to the successful solution method.
%c
is the integration constant for first order ODEs.
%k1
is the first integration constant for second order ODEs.
%k2
is the second integration constant for second order ODEs.
gauss_a(a,b,c,x)
and gauss_b(a,b,c,x)
are 2F1 geometric functions.
They represent any two independent solutions of the hypergeometric differential
equation x(1-x) diff(y,x,2) + [c-(a+b+1)x diff(y,x) - aby = 0
(A&S 15.5.1).
The only use of these functions is in solutions of ODEs returned by
odelin
and contrib_ode
. The definition and use of these
functions may change in future releases of Maxima.
See also gauss_b
, dgauss_a
and gauss_b
.
See gauss_a
.
The derivative with respect to x of
gauss_a(a, b, c, x)
.
The derivative with respect to x of
gauss_b(a, b, c, x)
.
Kummer's M function, as defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Section 13.1.2.
The only use of this function is in solutions of ODEs returned by
odelin
and contrib_ode
. The definition and use of this
function may change in future releases of Maxima.
See also kummer_u
, dkummer_m
and dkummer_u
.
Kummer's U function, as defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Section 13.1.3.
See kummer_m
.
The derivative with respect to x of
kummer_m(a, b, x)
.
The derivative with respect to x of
kummer_u(a, b, x)
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These routines are work in progress. I still need to:
ode1_factor
to work for multiple roots.
ode1_factor
to attempt to solve higher
order factors. At present it only attemps to solve linear factors.
ode1_lagrange
to prefer real roots over
complex roots.
ode1_lie
. There are quite a
few problems with it: some parts are unimplemented; some test cases
seem to run forever; other test cases crash; yet others return very
complex "solutions". I wonder if it really ready for release yet.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The routines have been tested on a approximately one thousand test cases from Murphy, Kamke, Zwillinger and elsewhere. These are included in the tests subdirectory.
ode1_clairault
finds all known solutions,
including singular solutions, of the Clairault equations in Murphy and
Kamke.
ode1_lie
are overly complex and
impossible to check.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by Crategus on Dezember, 12 2012 using texi2html 1.76.